Skin SST analysis in NASA GEOS Atmospheric Data Assimilation System

Santha Akella Ricardo Todling and Max Suarez

Global Modeling and Assimilation Office Goddard Space Flight Center

Current status of Skin Temperature

Skin SST or atmosphere lowest level temperature: T_s

changes over land but not over ocean

Current status: T_s over ocean

- Set based on surface boundary conditions, e.g., bulk retrieved "Reynolds SST"
- T_e has no near-surface variability, e.g., diurnal variations
- GSI Analysis (always) includes T_s as a control var, but resulting analysis is **not** used by the model
- SST relevant IR & MW radiance obs are not analyzed, e.g., AVHRR, AMSR, TMI, . . .

Important because...

- \star Air-sea flux computation requires T_s
- $_{\star}$ Coupled Atmosphere-Ocean Analysis relies on it
- Assimilated & bias corrected by GSI ...
- \star Analysis: because it is "measured" by satellites via TB
- ⋆ Time-scale of evolution is few hours, not day(s) like deep ocean temperature

Bottom-line: T_s is more atmosphere relevant, than to the ocean.

T_s modeling & Analysis

$T_s = OSTIA SST + [\Delta T_w - \Delta T_c]; Interface layer depth = 2m$

- **△T_w**: solar heating, @ low wind speed, $Max \, \Delta T_w \sim 2 3^o K$
- $lack \Delta T_c$: a thin cool-skin layer

(persistent all day), $\Delta T_c \sim 0.3 - 0.5^o K$

AVHRR (N-18, METOP-A) $3.7 \text{ (night time)}, 10.7, 12\mu m$ Once **coupled** with ocean

★ Analysis now includes

DAS, OSTIA SST will be swapped out by analyzed temperature

OSTIA SST because . . .

- daily @ 1/20°
- diurnal warming observations are screened out

■ near-real time availability (1985–),

T_s modeling & Analysis (cont.) $\star \Delta T_w, \Delta T_c = f \text{ (heat fluxes, wind speed, ...)}$

- ★ Trivial extension to ensembles: Atmospheric GCM computes
- $T_s, \Delta T_w, \Delta T_c$ as prognostic variables
- \star Change in $T_s \Rightarrow$ different T, q, p_s, u, v (i.e., entire GCM)

Experiment setup

Exp. Name	$\mathrm{T_{s}}$	AVHRR obs
CTL	= OSTIA SST	✓
EXP	$= \text{OSTIA SST} + [\mathbf{\Delta T_w} - \mathbf{\Delta T_c}]$	✓

- CTL used OSTIA SST as $T_s \rightarrow$ Just add AVHRR obs to current system
- AVHRR TB observations (GAC): N18 & Metop-A
- Resolution: $288 \times 181 \sim 1^{\circ}$, 15 day spin up period; Consider 1 month (Apr 2012)
- in-situ temperature observations (drifters, buoys) within top 2m were passive

Results: AVHRR OMF time series

Bias corrected global [Obs – Guess]

Ch.3 Night time

Exp Mean[OMF] closer to zero.

 $\mathbf{T_B}[Ch.3]$ is most sensitive to $\mathbf{T_s}$

Results: AVHRR OMF time series (cont.)

Ch.5: Water vap contrib to TB

Results: AIRS-Aqua OMF global ocean

Impact on existing IR obstypes: Channels that are sensitive to $\mathbf{T_s}$

Results: IASI-Metop-A OMF global ocean

Impact on existing IR obstypes: Channels that are sensitive to $\mathbf{T_s}$

 $\Delta Q_{net}[W/m^2]$

Progress Summary

- Model produces **realistic skin SST**: noticeable *changes in net heat flux*
- 2 All 3 channels of AVHRR were satisfactorily assimilated: Mean[OMF] $\rightarrow 0$ & Std Dev[OMF] < specified σ_o
- $\begin{tabular}{ll} {\bf Improved} \ ({\rm small}) \ {\bf assimilation} \ {\bf of} \ {\bf T_s} \ {\bf sensitive} \\ {\bf IR} \ {\bf channels} \\ \end{tabular}$
- 4 Combination of **modeling** (T_s) and analyzing AVHRR: better results than just assimilating AVHRR as in CTL
- 5 Forecast Skill: Neutral in NH; Improvement (small) in SH

Current Work

- 1 Extend to include SST relevant MW obs: TRMM-TMI, GPM-GMI, AMSU-A (ch.:1, 2, 3), ...
- 2 Evaluate air-sea fluxes w.r.t. buoy obs
- 3 High resolution experiments
- 4 Two-way interaction: of T_s analysis with **aerosol** analysis

Issues to resolve: in-situ obs bias

Drifting buoys $(z_{ob} = 20 \text{ cm})$ that were used for OSTIA SST

- Global mean bias ~ 0 Good! ©
- Interesting diurnal biases pop up when we **passively** look closely! ⑤

Issues to resolve: in-situ obs bias (00Z)

Issues to resolve: in-situ obs bias (diurnal)

Issues to resolve: in-situ obs bias (diurnal)

- Night time: if OSTIA SST is warmer (pink color) cool-skin & IR obs could get us on track!
- Day time: Obs are warmer than OSTIA SST, as desired. Recall: day time, low wind speed obs are excluded in OSTIA analysis
- **Problem**: when OSTIA SST > Obs we need (MW) data → in tropics to fix biases!

$[OBS - \mathbf{T_d}]$ Bias

OMF: $[OBS - T_{BKG}]$ Bias

$[OBS - \mathbf{T_{BKG}}]$ Diurnal Bias

